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Abstract, Let u be a symmetric p-stable measure on a Hilbert
space H. The distribution function of the norm F (£ = u {x:||x]| <t} is
absolutely continuous on (0, oc). We prove an explicit formula for the
density F'(t) and some of its consequences.

1. Introduction. Let u be a symmetric p-stable measure on a Banach space
(E, [I-])- Consider the distribution- function of the norm, ie.
CF(t)=p{x:|Ixll < t}. It is well-known ([3], [8], [9]) that F is absolutely
continuous with respect to the Lebesgue measure on (0, oo) (apart from one
possible jump if 1 < p < 2). The properties of the density F’(f) were inves-
tigated (even in more general setting) for 0 < p < 1 in [5]. It was shown that

(1) Ft) = % f[u(U)—pu(U,+x)]dv(x) for t>0,
where U, = {x:||x|| < ¢} and v is the Lévy measure of y. The crucial point in the

proof of this formula was the fact that the absolute continuity of F implied that,
in a neighbourhood of the origin,

@ w(U)—pu (U, +x) < ¢ lIxll,
where ¢, are bounded on half-lines (a, o). Since, for 0 < p < 1, the integral
o [ Ixlldv(x)
(=l <1}

is finite, we could prove formula (1). From (1) we deduced the asymptotic -
behaviour of F’(t), when ¢ tends to infinity (cf. {5]). If 1 < p < 2, the problem is'
more difficult. The estimate (2) is not strong enough, but it is easy to see that
the estimate

) o p(U)—p(U,+x) < ¢ Il

is sufficient, where ¢, are bounded on every half-line (a, ).
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In this paper we show that (3) holds for all pe(0, 2] if E is a separable
Hilbert space. As a corollary we get formula (1) and some of its consequences
like boundedness and behaviour at infinity. The problem of boundedness of
F'(t) is important for the Berry-Esséen type estimates in the Central Limit
Theorem in Banach spaces with the stable limiting law.

In the Hilbert space these densities were examined by Pap [6]. He showed
that, for 1 < p < 2, the density F'(t) is bounded, but he used the Hélder’s
inequality, hence he could not examine the case p = 1. We use his idea to prove
our Theorem 2. Later, in [2], Bentkus and Pap investigated the smoothness of
F (t) in Banach spaces,-when the norm is of a particular form, for example, if it
is induced by a bilinear functional. Using characteristic functions, they
managed to show that, under additional assumptions, F has a number of
derivatives,-and if E is a Hilbert space, then F/(t) is bounded for 1 < p < 2.
They also gave an asymptotic estimate of F'(t).

In our paper we obtain formula (1) for F'(t) which enables us to show that
F'(t)is bound"eq for every pe(0, 2) and to give an asymptotic estimate for F'(z)
at infinity. Our methods are quite elementary (especially for Gaussian
measures) and do not depend on characteristic functions and sophisticated
symmetrisation inequalities used in [2]. We use only the fact that any
symmetric p-stable measure can be obtained as a mixture of Gaussian measures
(see Proposition 1).

2. Notation and basic facts. Throughout the paper H denotes the separable
Hilbert space with its norm ||-|. We write U, = {x:||x|| < t}. We consider
symmetric p-stable, 0 < p < 2, measures u on H. If p = 2, then this measure is
Gaussian and we usually denote it by y. To avoid triviality, we always assume
that dim supp u = 2. If ¢ is a symmetric p-stable measure on H, then there
exists a o-finite measure v on H, v(V*) < oo, for every open neighbourhood V¥ of
the origin and such that p = lim exp (v|V5) for ¥, \ {0}. The measure v is called
the Lévy measure of u, and v(rA) = r~?v(A) for every Borel set A and r > 0.
There exists a finite measure ¢ on the unit sphere S, in H such that, if
r(x) = [Ix|| and s(x) = x/llx|l},

@ v lulerlied) = | T L) Ede

e . 18
for every ¢ >0 and a Borel set 4. We call o the spectral measure for u.

~In the sequel all absolute constants will be denoted by cy,c,, ...
By F we denote the distribution function of the norm:

' F@)=p{x:lIxll <t} *
We prove the estimate (3) for Gaussian measures and next apply it to stable

measures using the following '

ProrosITION 1 ([4], [8]). Let X be a symmetric p-stable vector in H with the
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distribution u and with the spectral measure 6. Put M? = ¢(S,) and

2]

= [ x Psinxdx.
1]

-1 _

Cp

Let X, (®,), X,(®,),... be a sequence of i.id. random variables with the
exponentlal dlstrlbutlon P{X =x}=exp(—x) forx>0; [, =X,+...+X,.
Let (g;(c0,))i~ 1 denote a sequence of iid. Gaussian random variables with
Eg, =0 and Elg,|’ =1, and let Z,(w,), Z,(w,), ... be a sequence of iid.
random-vectors with ualues in H and with the distribution L(Z,) = ¢/a(S,).

Assume also that the_three sequences defined above are independent.

Then -for every Borel set A we have

) P{XeA} =E, P, {c,M Z I, (a)l)‘”"g,(wz)Z (wl)eA}

3. Estimates for the Gaussian measures in R" and H. Let y be a
symmetric Gaussian measure on H. Assume that supp y = H and that
Ay =4, 2 ... = A, >...are the eigenvalues of the covariance operator of y. It is
well known that we can choose an orthonormal basis {¢,} in H in such a way
that y is the distribution of a series

5 Vb,

i=1

where (6)%, are iid. with the distribution N (0 1). We are 1nterested in
behaviour of the distribution of the norm of

S, (0) = Z (VA8 (w)+r)e;, where r=(r,...,r,)eR"

i=1
In the sequel by @ we always denote min(a, 1) for every aeR.

LemMmaA 1. The distribution function of ||S,(w)|| is absolutely continuous on
(0, o0). If we denote its density by f, (t), then there exist constants ¢y, ¢, >0 such
that for every reR" |r| <1 and t >0,

cyt

(@ f () < ( )1/25 where ’Ti = min(j"i’, 1), .
and

Cyt
® 250 < Fm -

Proof. For every 5, h > 0 we have
©®) P{s<|IS, (@)l <s+h} =P{s* <|IS,(@)I* < (s+h)?}

= P{SZ"<~ i (\/’Tiei(w)'l"'i)z < (5+h)2}-_
=1
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. The distribution function of (\/Z 0,(w)+r;)? is absolutely continuous on
(0, 00), hence ||S,(w)|| has absolutely continuous distribution.

We estimate the density of the distribution of ||S, (w)||%.

Let us put, for t > 0,

- The density g(t) of the variable ||S, (a))ll2 is the convolution of h and h,:

1
7 g(t)_jh (t— x)h (x)dx < WI[& x)x]” ”zdx—(/1 77

It is evident that g(0) = 0. ce =
Let us denote by R(x) the density of

IS, () =S, (@)I? = \ﬂ 0;(w)+r.)
Since
P{s? < IS, (@)I* < (s+h?} =P {s> < ||, (@)> +]IS, (@) — S, (@)I* < (s+h)*}

0

= [P{s?—x < IS, (@)II* < (s+h)2—x}R(x)dx

(-]

< supP{s —x < ||S2(co)ll2 <(s+h)?*—x}

< —2 (/1 l )1/2 [(s+h)?—s%],

from (6) we get that £.(s) < c¢,s/(4,4,)"%. We now estimate f}(t). Denote by k, (£)
the density of the distribution of ||S,(w)||*; then

k,(t) = j'g(t—x)R(x)dx.

Observe that k, (t?) = £, (t), hence f} (t) = 2tk (t*) and k,(¢) exists because k,
~is a convolution of smooth functions h,(f). If we show that

’ ’ ’ ‘ C4
(8) ~ lg' @) < PR AR
then, since g(0) = 0, we infer that
|k, (£)] = ”g (t x)R(x)de I /1 )5,'2 '

and, finally, |f;(0)] < c,t/(1,1,)*% Now we show that (8) holds. Substituting
u=x/t in (7), we get
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g@t)=

1 i _ t t
B, iy ) [ =W ™2 X0 (1) X ()
where :
Xi(x) = exp(—t(\/’_cz;ri/\/;) >+cxp<ut(\/>_;;ri/\/f) >
Let ‘

¢ (x) = exp

—exp

(___t(\/;+r, \/;2) (—t(ﬁzziri/\ﬁ)Z):.

Easy calculatlons show that

1)1/2_“(1—“)“]_1/2[ (1-w Xy (1— ) X5 (W) +

® d0= W

17/
+ —rl—Y‘ (w) X5 (w+ *lwuX‘ wX4{ (11— u)+ ! rZ\/_Y‘Z(u X{(1— u):ldu
T b i

Let us divide the right-hand side of (9) into four integrals and observe that
the absolute value of the first and the third integral is less than (A7 '+ 15 1) g (¢).

It is easy to see that estimating two remaining integrals it is sufficient to do it
for one of them:

. -1 : _
sup | [(1—w)u]~ "2 Y 7% vt ) X0 @ = ¢ < + oo
t>00 \/;

(recall that |r,| < 1 by assumption).
By elementary inequality je”*—e™ ¥ < |x—y| for x, y > 0, we get

‘ 1, —t(,/l—u—rl/\ﬂ)z) (—t(, /1—u+r1/ﬁ)i>
— Y, (w)| = exp —exp
N < 27, 21,
< 2lry|/1—u <£
~ Al

\Al-

Finally,

1
|gr 0l < W<;+ c7> < (I 23)5/2’

which completes the proof
Now we prove a theorem which is the crucial point of the paper.

THEOREM 1. Let y be a distribution of the series

Z": \/Z'Bi(w)eia
i=1
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where (et 1 is the standard basis in R" and (0,); - ; are i.i.d. with the distribution
N(0, 1), Assume that Ay >... = 4,> 0 and let reR" with |r]| < 1.
Then there exists an absolute constant ¢ > 0 such that

(10) | y(U)—y(U,+1) < FTARE /1 SRR firll>.

Remark 1. It is obvious that the left-hand side of (10) is less than 1.

Remark 2. Observe that by virtue of the well-known Anderson’s in-
equality we have y(U,)—y(U,+7r) > 0. In view of Proposition 1 we infer that
the same is true for symmetric stable measures.

Proof. For fixed reR" put r*=(ry, ..., 1, 0,...,0)eR". Let us write

S, (0) = Z J%0,(@)e; and S},; Y VA0, (w)e,.

i=1 i#k

We show that, for k=0,1,...,n—1,

; .
(1) [P {S, (co)eU +r*}—P{S, (a))eU +r"“}|<Wh§+1.

By the tnangle mequahty and (11) we get

n—1-

P{5, @)U ~P{S,@)eU, 7} < Y st = gt

Now we show (11). For fixed ke {0, 1, ..., n—1} letff.‘ be the density of the
distribution of ||S¥* ! (w)—r¥||; here * = (r,, .. rk, ,...,0eR*" !, We have

=P{S,(@)—reU}—P{S, () —r"“eU} |
=P{”Sﬁﬂ(ﬂj)"rk”z"'(\/lk+10k+1(w) ) < 2} — |
—P{ISE* (@) =PI+ (VAicr 1 Or 1 (@) 7 1) < 2}
P {(\/ ks 10ks1 (@) < t?—x?}—
—P{\//lk+19k+1(w)+rk+1) < 2 —x*}] fH(x)dx
; t?—x? t2—x t2—x2  Fraq )
—flef =) —e( - =)0 _
'([l: ( Ak+1) dj( ;Lk+1') ( Aerr S A *

) +¢(_ £2__x2_ Fr+1 )jlf’:(x)dx,
1

Ak+1 A’k+

ot—q—.

where
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yoor x?
di(y)=_ \/Eexp Y dx.

Denoting for simplicity A,., by 4 and r.+, by a we get
t
If = [H,(x) ff (x)dx,
0

where

_ H,(9) = 2@( t21x2>—¢<‘/;2_:/?+“)—¢(‘/7;“).

Now the estimate depends on k. Let k = 0 or 1. Taking three terms in the
Taylor’s formula with the Lagrange form of the reminder, we have

a’[Jt*=x*~6,a t2—x%—8,a)?
N/21cH,‘(x)=ﬂ|:'Tlexp<—( 57 19) )+

72 2_x? 2 ‘
= VMY )

Because max |xe” 2| = ¢ 12, we have
xeR
2 ¢ 1
a c
15l < [ fix)dx < =2,
\/;/lo A

hence, for k=0 or 1, we have |I%| < cg/(4, 1,)*/%
Now, take ke {2, ..., n—1} and use the Taylor’s formula with the integral
form of the reminder: ' A

.21 2_ 2 2_ 2
H,00 = % f1—s) l:gp" <___wxsa) e (m\ﬂm:)] is.
Ao JA N/
Because ./2nd” (x) = —x exp(—x?/2), we have to shbw that

sup |I% = ¢y < 00,
0<a<1

where

k=1‘uf’,‘(«/t2—u2)1 N [u+sa (_(u+sa)2) |
L e e A Sy 2 )t

. u—sa — (u—sa)®
+ ﬁ exp( 7 )]dsdu.
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Assuming 0 < g, we estimate I% using Fubini theorem and Lemma 1. The
first term is estimated as follows:

LR —uz)1 u utsa 1 ( (u+sa)2>

12 — ——— )dsd

I = LN IV W TR L

f (/12 z)j.(u+sa)2 1 ( (u+sa)2)
S

1 (t+sn)/Jl k 2_ _ 2 2

= | j' f \/t (\/I d sa) 2 exp ( ) dvds

0 saivi \/ 2 — (/Av—sa)? -
_L e 2 — f < C—2
NV SRR e"p( z)d” LT

Now the second term:

k( /2 a2
afuf\(/,zT )5“ \/- (_(Eﬂﬂ>d5d“

=1‘ ’,‘(\/m)l—scc—sa)2 (—(u—sa)2>d p
(j;g o \//_1 \/I exp| ——-— | du s+

f,lf(\/ —u? sa u-—sal—s —_(u—sa)’- _

_ The intergal I, we estimate in the same way as (12). Observe that it is
sufficient to prove (10) for r such that ||r|]|> < /2; hence we may assume that
a = ||r]l < t/2 because, for 0 < a < 1, we have a® < a. To estimate I, we divide
it into two integrals; the first one is the following:

- 1: fk(m sa u—sal—s ( (u—sa)z>d P
({3) el e A\ T )

og_ép.

© ey

1
+
0

N

L . sau—sa 1 — (u—sa)®
<aim i A (T e

} - Sj'f)/«/l sa ( Z)d y
xexp x ds
(/1 j-2)1 0 (t/2-sa)lva \/—
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¢, al — (t/2 —sa)*
D ey -—— — T d
w1 )
122 2 / 2
S S s [ exp (_x> dx < 1:1//2
(4145) t/2—a)vi (Z x. 2)
Estimating the second integral we apply the mean value theorem,

. (\/Ix+$a)2) [r/ 1= (sa))
(14) = +
\/tz—(\/zx+sa)z"” = (sa)

+xf(f9x+sa)f(y) {;,z(yx)\/y_x D+x f(f&xﬂa)E(yx

where y, = tz—(ﬁ9x+sa)2 and 0 <9 < 1.
By (14) we obtain the estimate
@/2-sa)/Vi

1 sa X2
(15) Ia-I4=,_£(1—s) i Dﬂxexp( 3 )dxds+

—saj/A

1 (2-salyid x2
+ / j')/ (1—S)x\f(\/—9x+sa)E(y)—xCXp< )dxds—l +1,.
0 —saj/A \/—

The integral I can be estimated in the same way as I, in (13), hence it

remains to estimate I, only. From Lemma 1, for xe(—sa/\/— t/2— sa)/\/_ ),
we have

(A9 x+50) EG) < /18 -+sa (lfy(yx)l ﬁ%))

Yx
< €z |ﬂ9x+sal ¢y |\/_9x+sa|
Gy G ————

< Cio t/2 >C1
B (2,4,)°? m1n(4t2 \/_t) t(Ay4,)°"

Vs

[

Finally,
, i1 1 (t/2—sa)JA —x2\ . C1a
(16) !IG| < F(—I—W)STJI _s‘_!;JI Sa-xZ-exp D) dx dS F(I ~ )5/2,

which, together with (13), gives the desired result. The proof of the theorem is
completed.

7 — Probability 10.2
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Let now y be a Gaussian measure on H. Assume that supp y = H and that

y is the distribution of the series Z \/_ 4;0;(w)e;, where (e)i~ is a CONS in

i=1

H and le,-<oo with 4, > 1, >

i=1

By 7y, we denote the distribution of 3, \/_ 0,(w)e,.
i=1
CoOROLLARY. 1. Under the above assumptions there. exzsts an absolute

constant ¢ > 0 such that, for every t >0 and reH,

— ' c
17 V(U:)—V(U:frr) < Wllrllf-_

Prbof. For every re H the series
S(@) =Y (V40 (@)+r)e
i=1

is convergent with probability 1, hence weakly. Lemma 1 implies that the
distribution of ||S (w)]| is absolutely continuous on (0, o), hence, for every
t>0, and reH,

limy, (U, +r) =y (U,+71).

For every € >0 we can choose an n,€N such that, for n > n,,
(18) PaU)—yU)l<e and [y, (U+n)—yU+r) <e.
By virtue of Theorem 1 and estimates (18) we have

Y(U)=y (U, +7) =y (U)—7,(U)+7,(U)—7, (U, +1)+7, (U, +r)—y (U, +r)|

Y 8+ W”rllz‘i'g
Taking ¢—0, we get the desired result.

Remark. Using the Cameron-Martin formula we get' an estimate much
weaker than (17) and only for r belonging to the RKHS of y.

4. Estimates for stable measures in H. We use an idea belonging to Pap [6].
Let u be a symmetric p-stable measure on H. By Proposition 1 we can write, for
every t >0, :

19 BU)=Ey Poy{e,M 3 0 70,0 Z (@)U

i=1
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For fixed o, the series on the right-hand side of (19) represents a symmetric
Gaussian measure y,,. Let A,(w,) denote the eigenvalues of the covariance
operator of y,, and assume that 4, (w,) = 4,(w,) > ... Pap [6] showed that

1
o ('11 (o) '12 (w1))5/2
From this result we deduce our next theorem.

THEOREM 2. If 1 is a symmetric p-stable measure on H, then there exists
a constant C > 0 such that, for all resupp p and t >0, :

< 0.

(20) W)=+ < S

) Proof. Sztencel [9] proved that for almost all @, the supports of Ve
are equal to the support of y, so we can assume that supp x4 = H, and then
supp y,, = H for almost all w,.
By Pap’s result, (19) and Theorem 1 we see that there ex1sts a constant
C > 0 such that

pU)=pU A1) = E, [74,(U) =70, (U, +7)]
1
( (@ 1)12(0)1))5"2

5. Formula for the density. We can now prove our main theorem. In [5] we

0

~I|r||2E = =lrll*.

gave an analogous formula for pe(0, 1) and measurable seminorms in any

Banach space. Here we show the formula in Hilbert space only, but for all
pe(0, 2). All the technical details are very similar to those given in [5] with one
exception: now we apply Theorem 2 instead of estimate (2).

THEOREM 3. Let i be a symmetric p-stable, 0 < p < 2, measure on a separable
Hilbert space H. Then the distribution function F(t) = p{x:||x|| <t} is ab-
solutely continuous and, for every t >0,

en - FO)=2][nU)-nw,+9] v,
H .

Wwhere v is the Lévy measure of .

Proof. The details of the proof may be found in [5], here we sketch only
the,main ideas. It is easy to see that if F'(t) exists, then

P9 = lim?2 k), +x)]dom (),

s-—>0
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where (ux)s,.é is a symmetric semigroup of p-stable measures such that Uy =L
For every t> 0 the function f,(x)=pu(U)—p(U,+x) is continuous and
bounded and, for every &> 0,

1 '
(22) -l converges weakly to v ‘ as s—0,
§ ez lixll > ez x|l > e}

By virtue of Theorem 2, for every ¢ > 0, we have

N ' . o i -
(23) { [U)—p@U,+x%] d— i (x)
L Elxll<a
C 1 C
<[ HIxlPd-px) == [} s 1 1|2 dp (x)
x:llxl <2 s (e [lxll <es—1rpy
C gs—1/p

SFSOPT {0 2ol > o) do < ;3 2-p,
because u{x: ||x|]| > a} < cyaa”? (see e.g [1]).
Combining (22) and (23) we deduce that, for every & > 0,

lim § [ (U)—p(U,+x)] al S (x I[u (U)—u(U,+x)]dv(x),

s—=0H

which implies

F=E ([ U)—h(U+x] dv ).
This formula implies the continuity of F'(t). Indeed, let t,—t > 0. Then, for
every xeH, f, (x)— f,(x), and this, in turn, implies that F'(t,)— F' (2) (cf. [5]).
This completes the proof of Theorem 3.
Now we give an asymptotic estimate of F'(f) at 1nﬁn1ty Fix t> 0. By
Theorems 2 and 3 and by (4) we can estimate as follows:

Il (U)=p (U] dv() = | ] [4(U)—p(Utr3] 0 ()17
H

<a(S,) ISUp[u(U,) p(U,+r2)] 5, 1+p

0zeS,

dr

<o(S) | mm(f 1) >
1

: =U'(S1)[j‘
0

N»zl a

ri=Pdr+ ICr"l“'dr:I < ¢ys < +00.
1
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By formula (21) we obtain the following

COROLLARY 2. Let p and F be as in Theorem 3. There exists a constant

K > 0 such that, for all t > 1, F'(f) < Kt~ 1.

Remark. In [5] we showed the exact asymptotic behaviour of F'(t).
Namely, if 0 < p < 1, then
' lim t'*PF'(t) = o (S,).

t— o0

We conjecture that in this case the same is true. :

In view of formula (1), obtained in [5] for 0 < p < 1, Ryznar [7] showed
that F’ (t) is bounded. Repeating his arguments and using (21) instead of (1) one
can show that F'(t) is bounded for all pe(0, 2).

COROLLARY 3. In the setting of Theorem 3 the density F' (1) is bounded on
(0, ).

Proof It is enough to show that F’ (t) is bounded on (0, 1). Let us choose
t <1 and fix me N. We will specify m later on. By virtue of (21) and (20) we
have

F0) =2 [n(U) = p (U, + ] dv(x)

p ...[mC , dr % dr
<?G(S1)|:£?r2rl+p+ ".F(t)rl+p

m

S_ chpa(Sl) [Ct(Z_P)m—2+F(t)t_mp_l] )

Taking m such that 2-—-p)m—2 >0 and taking into account that
if supp u is infinite-dimensional, then for every neN, F @) =o(t"), t—-0
(see [1]), we get that

lim F'(t) =0
t=0 ’ ’

If supp p is finite-dimensional, the result is well-known.

- We believe that the estimate of type (3) is valid in any Banach space and
that the following conjecture is true:

CONJECTURE. Let y be a symmetric p-stable measure on a separable Banach
space E and put ty =inf{t > 0:F (¢) > 0}. Then for every t > t, there exists
a constant c(t) which is bounded on every half-line (a, ) and such that
p(U)—p(U,+x) < c @l

If this conjecture is true, then formula (1) holds, and we can apply it in the
investigation of properties of the density F’(¢).

Added.in proof. It turned out that in general the above conjecture is
false. Nevertheless, it is true in some classes of Banach spaces, e.g. in L, spaces

sy
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forp > > 2. The results are contained in the forthcomlng paper “The measure of
a translated ball in umformly convex spaces” written by M. Ryznar and the
author. '
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