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Abstract. Let p be a symmetric p-stable measure on a Hilbert 
space H. The distribution function of the norm F (t) = p  {x: llxll < t )  is 
absolutely continuous on (0, co). We prove an explicit formula for the 
density F( t )  and some of its consequences. 

1. Imtrodaction. Let p be a symmetric p-stable measure on a Banach space 
( E , ) .  Consider the distribution function of the norm, i.e, 
F ( t )  = p Ex: llxll < t ) .  It is well-known ( [ 3 ] ,  [a], [9 ] )  that F is absolutely 
continuous with respect to the Lebesgue measure on (0, m) (apart from one 
possible jump if 1 < p < 2). The properties of the density F'(t) were inves- 
tigated (even in more general setting) for 0 < p < 1 in [5] .  It was shown that 

P ( ~ ) = ~ { L ~ ( U J - ~ ( U , + X ) I ~ V ( X )  for t > ~ ,  
E 

where U, = (x: llxll < t }  and v is the Ltvy measure of p. The crucial point in the 
proof of this formula was the fact that the absolute continuity of F implied that, 
in a neighbourhood of the origin, 

where c, are bounded on half-lines (a, a). Since, for 0 < p < 1, the integral 

is finite, we could prove formula (1). From (1) we deduced the asymptotic 
behaviour of F'(t), when t tends to infinity (cf. 151). If 1 < p < 2, the problem is1 
more difficult. The estimate (2) is not strong enough, but it is easy to see that 
the estimate 

- 

(3) P(U, ) - -P (U~+X)  G c ~ H x I I =  
is suficient, where c, are bounded on every half-line (a, a). 



In this paper we show that (3) holds for all p ~ ( 0 ,  21 if E is a separable 
Hilbert space. As a corollary we get formula (1) and some of its consequences 
like boundedness and behaviour at infinity. The problem of boundedness of 
F'(t) is important for the Berry-Esshn type estimates in the Central Lirnit 
Theorem in Banach spaces with the stable limiting law. 

In the Hilbert space these densities were examined by Pap [6]. He showed 
that, for 1 < p < 2, the density F(t )  is bounded, but he used the Holder's 
inequality, hence he could not examine the case p = 1. We use his idea to prove 
our Theorem 2. Later, in [2], Bentkus and Pap investigated the smoothness of 
F (t) in Banach spaces,-when the norm is of a particular form, for example, if it 
is induced by a bilinear functional. Using characteristic functions, they 
managed to show that, under additional assumptions, F has a number of 
derivatives, and if E is a Hilbert space, then F'(t)  is bounded for 1 < p < 2. 
They also gave an asymptotic estimate of F'(t). 

In our paper we obtain formula (1) for F ( t )  which enables us to show that 
F' ( t )  is bounded for every p ~ ( 0 ,  2) and to give an asymptotic estimate for F (t) 
at infinity. Our methods are quite elementary (especially for Gaussian 
measures) and do not depend on characteristic functions and sophisticated 
symmetrisation inequalities used in [2]. We use only the fact that any 
symmetric p-stable measure can be obtained as a mixture of Gaussian measures 
(see Proposition 1). 

2. Notation and basic facts. Throughout the paper H denotes the separable 
Hilbert space with its norm il.11. We wfite U,  = {x: IlxlI c t). We consider 
symmetric p-stable, 0 < p < 2, measures p on H. If p = 2, then this measure is 
Gaussian and we usually denote it by y. To avoid triviality, we always assume 
that dim supp p 2 2. If p is a symmetric p-stable measure on H, then there 
exists a a-finite measure v on H, v (Vc) < c ~ ,  for every open neighbourhood Vof 
the origin and such that p = lim exp (vl Vg) for ~n LO). The measure v is called 
the Lduy measure of p, and v (rA) = r - P  v (A) for every Bore1 set A and r > 0. 
There exists a finite measure a on the unit sphere S, in H such that, if 
r (4 = llxll and s (4 = xlllxll, 

for every E > 0 and a Bore1 set A. We call a the spectral measure for p. 
In the sequel all absolute constants will be denoted by c , ,  c,, ... 

By F we denote the distribution function of the norm: 
F (t) = p {x: flxll < i). 

We prove the estimate (3) for Gaussian measures and next apply it to stable 
measures using the following 

PROPOS~TION 1 ([4], [8]). Let X be a symmetric p-stable uector in H with the 
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distribution p and with the spectral measure c. Put MP = s(S,) and 

Let XI (a,), X ,  (a,), . . . be a sequence of i.i.d. random variables with the 
exponential distribution P ( X ,  2 x) = exp (- x) for x > 0; r, = X, + . . . + X,. 
Let (gi(w,))i", denote a sequence of i.i.d. Gaussian random uarinbles with 
Eg,  = 0 and EIg,IP = 1 ,  and let 2, (wl), Z2 (a,), .. . be a sequence of i.i.d. 
random- vectors with values in H and with the distrihertion LIZ,) = cr/c(S,). 

Assume also that the-three sequences dejined above are independent. 
Then -for every BoreE sei A we have 

m 

(5)  P (X E A) = E,, P,, {cp M C ri ( O I ~ ) - ~ / P ~ ~ ( C D ~ )  zi (a1) E A). 
i =  1 

3. Estimates for the Ganssian measures in Rn and H. Let y be a 
symmetric Gaussian measure on H. Assume that supp y = H and that 
A, 2 A, 2 . . . 2 An 2.. . are the eigenvalues of the covariance operator of y. It is 
well known that we can choose an orthonormal basis {e,)  in H in such a way 
that y is the distribution of a series 

f &i;scde,,  
i = l  

where (Oi),p"= are i.i.d. with the distribution N ( 0 ,  1). We are interested in 
behaviour of the distribution of the norm of 

n 

Sn(m)= (&O,(o)+rJe,, where r = ( r  ,,..., r ,J€Rn.  
i = l  

In the sequel by a" we always denote &(a, 1) for every a~ R. 
LEMMA 1. The distribution function of IISn(o)ll is absolutely continuous on 

(0, oo). i f  we denote its density b y f ,  (t), then there exist constants c,, c, > 0 such 
that, for every r E Rn, llrll < 1 and t > 0, 

and 

Clt .L G (1 1 )I,23 where xi = min(li, I), 
1 2  

Proof.  For every s, h > 0 we have 



. The distribution function of (A 0, (a) + ri)"s absolutely continuous on 
(0, co), hence IIS,(w)ll has absolutely continuous distribution. 

We estimate the density of the distribution of llS2(w)1I2. 
Let us put, for t > 0, 

The density g ( t )  of the variable IIS, (w)l12 is the convolution of h, and h,: 

- It is evident that g(0) = 0. 
Let us denote by R ( x )  the density of 

Since 

< sup P {s2-x < llSZ(~)1I2 < ( s + ~ ) ~ - x )  
x 3 0  

from (6) we get thatf,(s) < C ~ S / ( A , ~ ~ ) ~ ~ ~ .  We now estimatef:(t). Denote by k,(t) 
the density of the distribution of IIS,(W)~~~; then 

t 

k,(t) = j g ( t -x )~ (x )dx .  
0 

Observe that k, (t2) = f, (t), hence f i (t) = 2tki (t2) and k: (t) exists because k, 
is a convolution of smooth functions h,(t). If we show that 

then, since g (0) = 0, we ider that 

and, finally, If i (t)] $ c2t/(X1 12)512. NOW we show that (8) holds. Substituting 
u = x/t in (7), we get 
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where 

Xi (x) = exp - t (&+ ~~~41~) + exp (- t (&- r~&)' 
2 i i  

.- s. Let 

- - 
Y : ( x )  = ~ X P  t(J.+'i/$12) -- 21, - exp (- t ( f i - r i / f i~~)- .  2Ai 

Easy calcuIations show that 

Let us divide the right-hand side of (9) into four integrals and observe that 
the absolute value of the first and the third integral is less than (A; +A;  l) g (t) .  
It is easy to see that estimating two remaining integrals it is sufficient to do it 
for one of them: 

1 1 -u 
S U P S C ( ~ - U ) ~ I -  1 t 2 r 1 \ r ~ \ ( u ) ~ : ( u ) d u  = e,  < + m  
t > o o  4 

(recall that Irll < 1 by assumption). 
By elementary inequality Je-" -e-YI d Ix - yl for x, y > 0, we get . 

2tr1lJ1-u 2 < < -. 
14 A1 

Finally, 

which completes the proof. 
Now we prove a theorem which is the crucial point of the paper. 

THEOREM 1. Let y be a distribution of the series 



1 where (ei)y= is the standlard basis in Rn and (OiX=, are i.i.d. with the distribution 
N ( 0 ,  I), Assume that A, 8 . . . 2 A, > 0 and let T E  Rn with ( I T ( (  G 1. 

Then there exists an absolute constant c > 0 such that 

Remark 1. It is obvious that the left-hand side of (10) is less than 1. 
Remark 2. Observe that by virtue of the well-known Anderson's in- 

equality we have y (U,)  - y (U,  + r) > 0. In view of Proposition 1 we infer that 
the same is true for-symmetric stable measures.' 

Proof, For fixed r € R n  put 9 = ( r l ,  ... , rkt  0, ... , O)€Rn. Let us write 

S , , O  = &O,(w)ei and Si = & 6 i ( N e i .  
i =  1 i f k  

We show that, for k = 0, 1, . . . , n- 1, 

By the triangle inequality and (11) we get 

Now we show (1 1). For fixed k E (0, 1, . . . , n- 1 )  let f': be the density of the 
distribution of IISi'l (a) -rk[l;  here rk = (r,, . . . , rk, 0, . . . , 0) E Rn-l .  We have 

1; = P { S n ( w ) - r k ~ U t } - P ( ~ n ( w ) - r k + l ~  U,} 

where 
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Denoting for simplicity A,,, by 1 and rk+l  by a we get 

where 

Now the estimate depends on k. Let k = 0 or 1. Taking three terms in the 
Taylor's formula with the Lagrange form of the reminder, we have 

J Z 2 + a 2 a  

J ; i  
for O<6,,6, < 1. 

Because max )xe-x2121 = e-lI2, we have 
XER 

hence, for k = 0 or 1, we have jlk,l < c ~ / ( ~ ~ ~ ~ ) ~ ~ ~ .  
Now, take k E (2, . . . , n - 1) and use the Taylor's formula with the integral 

form of the reminder: 

Because &@" (x) = - r enp (-x2/2), we have to show that i 
sup II:I = c g  < GO, 

O < L < l  

where 



Assuming 0 c a, we estimate I: using Fubini theorem and Lemma 1. The 
first term is estimated as follows: 

Now the second term: 

L E u f : ( J V  ) l ( ~ - s ) - e x r (  u -sa - (U ,, - sa)" )asdw 
A, Jn 0 d 

f : ( j ? ~ ) l - s  - (-)' u-sa  exp ( - iu2; S a ) 2 )  L + 
=!d J & J? 

duds = I , + I ,  

The intergal I, we estimate in the same way as (12). Observe that it is 
sufficient to prove (10) for r such that llrjI2 < t /2 ;  hence we may assume that 
a = llrll d t /2  because, for 0 < a 5 1, we have a2 < a. To estimate I ,  we divide 
it into two integrals; the first one is the following: 

.. 

(13) 
' ' f : ( , / n )  sa u - s a l - s  

14=SI ,/n exp ( - (u2; du ds 

I I sa u-sa  1 --- - (u - ~ a ) =  
duds 
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r/2 JT 
- Cl - x2 
- I - exp (T)dx6~1x)~ /2 .  ~ 1 4 3  

('1 X2)1'2 (t/2 -a)/ 42. 1 2  

Estimating the second integral we apply the mean value theorem, 

114) 
: (Jt2 - (,,h x + sa)') - - f !  (JFi&@) + 

Jt2 - (Ji x + S.)'~ J- 1 

where yx = t2-($~x+sa)' and 0 < 9 < 1. 
By (14) we obtain the estimate 

sa 
s ) x $ ( & ~ x + s a ) ~ ( y 3 - x e x ~  

@ 
(+)dxds = I, + I , .  

0 -sa/JA 

The integral I ,  can be estimated in the same way as I, in (13), hence it 
remains to estimate I, only. From Lemma 1, for x s(-sa/,,h, (t/2 - sa)/$), 
we have 

Finally, 

which, together with (1 3), gives the desired result. The proof of the theorem is 
completed. 

/ 
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For fixed w ,  the series on the right-hand side of (19) represents a symmetric 
Gaussian measure yWl. Let Ii(ol) denote the eigenvalues of the covariance 
operator of y,, and assume that 1, (u,) 2 L,(o,) 2.. . Pap [6] showed that 

From this result we deduce our next theorem. 
THEOREM 2. If p is a symmetric p-stable measure on H ,  then there exists 

a constant C > O such that, for all r ~ s u p p  ,u and t > 0, 

Proof.  Sztencel 191 proved that for almost all w,  the supports of y,, 
are equal to the support of p, so we can assume that supp p = H, and then 
supp y,, = H for almost all o,. 

By Pap's result, (19) and Theorem I we see that there exists a constant 
C > 0 such that 

5. Formula for the density. We can now prove our main theorem. In [ 5 ]  we 
gave an analogous formula for p ~ ( 0 ,  1) and measurable seminorms in any 
Banach space. Here we show the formula in Hilbert space only, but for all 
p E (O,2).  All the technical details are very similar to those given in [5 ]  with one 
exception: now we apply Theorem 2 instead of estimate (2). 

THWREM 3. Let p be a symmetric p-stable, 0 < p < 2, measure on a separable 
HiZbert space H. Then the distribution function F (t) = p { x :  ( ( ~ ( 1  < t )  is ab- 
solutely continuous and, for every ' t > 0, 

where v is the Livy measure of p. 

Proof.  The details of the proof may be found in [ 5 ] ,  here we sketch only 
the-main ideas. It is easy to see that if F'(t)  exists, then 



where ( p J S ,  is a symmetric semigroup of p-stable measures such that p, = p. 
For every t > 0 the function f ,  (x) = p (U,) - p  (U, +x) is continuous and 
bounded and, for every E > 0, 

By virtue of Theorem 2, for every E > 0, we. have 

(22) 
1 

converges weakly to v 

because p {x: llxll > or) G c ~ ~ u - ~  (see e.g. [I]). 
Combining (22) and (23) we deduce that, for every E > 0, 

as s+O. 

which implies 

{I: ~~~~~ ' ~ 1  [x: IIxli > €1 

. 
This formula implies the continuity of F'(t). Indeed, let t,, -, t > 0. Then, for 

every x E H, ft, ( x )  +fr (x ) ,  and this, in turn, implies that F (t,) + F' ( t )  (cf. [5]) .  
This completes the proof of Theorem 3. 

Now we give an asymptotic estimate of F' (t) at infinity. Fix t > 0. By 
Theorems 2 and 3 and by (4) we can estimate as follows: 
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By formula (21) we obtain the following 
COROLLARY 2. Let p and F be as in Theorem 3. There exists a constant 

K > 0 suck that, for all t > 1, F r ( t )  d Kt-' .  
Remark. In [5] we showed the exact asymptotic behaviour of F'(t). 

Namely, if 0 < p < 1, then 

lirn tl 'PF'(t) = a(S,j. 
t - m  

We conjecture that in this case the same is true. 
In view of formula (l), obtained in [ 5 ]  for 0 < p < 1, Ryznar -[71 showed 

that F'(t) is bounded. Repeating his arguments and using (21) instead of (1) one 
can show that F' (t) is bounded for all p E (0, 2). 

COROLLARY 3. In the setting of Theorem 3 the density F'(t) is bounded on 
(0, m). 

Proof.  It  is enough to show that F'(t] is bounded on (0,l). Let us choose 
t < 1 and fix m E N .  We will specify m later on. By virtue of (21) and (20) we 
have 

< c16 p a (s,) [Ct(2-plm-2 +F ( t )  t-"p- I ]  

Taking m such that (2-p)m-2 > 0 and taking into account that 
if supp p is infinite-dimensional, then, for every n E N, F ( t )  = o (t"), t + 0 
(see [ I ] ) ,  we get that 

lim F' ( t)  = 0. 
t + 0 I 

If supp j i  is finite-dimensional, the result is well-known. 
We believe that the estimate of type (3) is valid in any Banach space and 

that the following conjecture is true: 
CONJECTU~. Let p be a symmetric p-stable measure on a separable Banach 

space E and put to = inf ( t  > 0: F (t) > 0). Then for every t > to there exists 
a constant c( t )  which is bounded on eslery half-line (a, ao) and such that 
P ( U , ) - - P ( ~ , + ~ )  < c(t)11x1I2. 

If this conjecture is true, then formula (1) holds, and we can apply it in the 
investigation of properties of the density P' (t). 

Added .  in  proof. It  turned out that in general the above conjecture is 
false. Nevertheless, it is true in some classes of Banach spaces, e.g. in L, spaces 
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for p >, 2. The results are contained in the forthcoming paper "The measure of 
a translated ball in uniformly convex spaces" written by M. Rymar and the 
author. 
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